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Fluids in natural systems, like the cytoplasm of a cell, often contain
thousands of molecular species that are organized into multiple
coexisting phases that enable diverse and specific functions. How
interactions between numerous molecular species encode for vari-
ous emergent phases is not well understood. Here, we leverage
approaches from random-matrix theory and statistical physics to
describe the emergent phase behavior of fluid mixtures with
many species whose interactions are drawn randomly from an
underlying distribution. Through numerical simulation and stabil-
ity analyses, we show that these mixtures exhibit staged phase-
separation kinetics and are characterized by multiple coexisting
phases at steady state with distinct compositions. Random-matrix
theory predicts the number of coexisting phases, validated by sim-
ulations with diverse component numbers and interaction parame-
ters. Surprisingly, this model predicts an upper bound on the
number of phases, derived from dynamical considerations, that is
much lower than the limit from the Gibbs phase rule, which is
obtained from equilibrium thermodynamic constraints. We design
ensembles that encode either linear or nonmonotonic scaling rela-
tionships between the number of components and coexisting
phases, which we validate through simulation and theory. Finally,
inspired by parallels in biological systems, we show that including
nonequilibrium turnover of components through chemical reac-
tions can tunably modulate the number of coexisting phases at
steady state without changing overall fluid composition. Together,
our study provides a model framework that describes the emer-
gent dynamical and steady-state phase behavior of liquid-like
mixtures with many interacting constituents.

phase separation j random-matrix theory j multicomponent j multiphase j
phase-field simulation

F luids composed of many components with multiple coexist-
ing phases are widespread in living and soft matter systems.

A striking example occurs in the eukaryotic cell, where distinct
biochemical pathways are compartmentalized into membrane-
less organelles called biomolecular condensates, which often
form through liquid–liquid phase separation (1–3). Unlike two-
phase oil–water mixtures, the cellular milieu is organized into
tens of coexisting phases, each of which is enriched in specific
biomolecules (1, 2, 4–8). Other prominent examples include
microbial ecosystems that organize into fluid-like communities
(9–11), self-assembling colloidal systems (12, 13), and synthetic
multiphase materials derived from biomolecules (14, 15).
Despite their extensive prevalence, our understanding of how
microscopic interaction networks between individual constitu-
ents encode emergent multiphase behavior remains limited.

Delineating the coexisting phases of a heterogeneous mixture
is a problem with a rich history (16)—determined by con-
straints of chemical, mechanical, and thermal equilibrium. In
mixtures with few components (fewer than five), a combination
of theory, simulation, and experiment has enabled extensive
characterization of phase-separation kinetics and equilibrium
coexistence (17–23) and the interplay between phase separation
and chemical reactions (19, 24, 25). In the biological context,
recent studies have begun to connect biomolecular features to

their macroscopic phase behavior in binary or ternary mixtures
(7, 26, 27). However, as the number of components increases,
determining the emergent phase behavior from the underlying
constraints becomes unwieldy and intractable—from both ana-
lytical and numerical standpoints, except for very particular sys-
tems such as polydisperse blends of a single species (28). An
alternate approach, originally proposed by Sear and Cuesta
(29), aims to characterize the phase behavior of mixtures that
contain many components whose pairwise interactions are
drawn from a random distribution. By building on results on
properties of random matrices, originally identified by Wigner
(30) and subsequently applied in various contexts (31–33), they
relate the initial direction of phase separation to properties of
the interaction distribution, subsequently confirmed indepen-
dently by simulation (34). These results, however, are limited to
describing only the initial direction of phase separation for mar-
ginally stable fluid mixtures (i.e., coinciding exactly at the spino-
dal). Consequently, little is known about the overall phase
behavior of fluid mixtures that spontaneously demix (i.e., within
the spinodal)—including kinetics beyond the initial direction of
phase separation or the number and composition of coexisting
phases at equilibrium. More generally, the emergent phase
behavior of fluid mixtures with many randomly interacting com-
ponents is not well understood. This lack of understanding, in
turn, limits our ability to rationally program fluid mixtures with
different macroscopic properties.

Significance

Immiscible fluids are found everywhere—examples include vinai-
grette and ouzo in the kitchen, multiphase hydrocarbon–water
mixtures common in oil extraction, and in virtually all living
things. Within the living cell, thousands of biomolecules orga-
nize into multiple coexisting liquid-like phases that enable
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Here, we develop a dynamic model of phase separation in
fluid mixtures with many randomly interacting components.
Through simulation of the model, we demonstrate that fluid
mixtures with many components exhibit characteristic similari-
ties in phase-separation kinetics and in the number and compo-
sitional features of coexisting phases at steady state, even when
the underlying interactions are random. We propose a simple
model, combining insights from random-matrix theory and
dynamical systems analyses, that predicts dynamical and steady-
state characteristics of the emergent phase behavior. We subse-
quently discuss two distinct ensembles (or component design
strategies) that encode either linear or nonmonotic scaling (i.e.,
with an optima) between the number of coexisting phases and
components. Finally, we extend our framework to incorporate
chemical reactions and show that active turnover of compo-
nents can tunably modulate the number of coexisting phases at
steady state even without altering overall fluid composition.
Overall, our model provides a framework to predict and design
emergent multiphase kinetics, compositions, and steady-state
properties in fluid mixtures with many interacting components.

Results
Model Definition. We begin by describing the free energy ( f ) of a
mixture of ðNþ 1Þ interacting species through a mean-field regu-
lar solution model at fixed temperature and overall volume
(Eq. 1). Here, ϕi represents the volume fraction of each species i,

and ϕs ¼ 1�
X

i
ϕi is the volume fraction of the remaining com-

ponent, which is typically the solvent. Equivalently, this model
can also represent the normalized volume fractions of (Nþ 1)
components in a solution where the total solute concentration is
invariant across phases. χij and χis are the effective pairwise inter-

actions among different species and between components and
solvent, respectively. For simplicity, we assume an initially uni-

form solute mixture (ϕi ¼ β
N 8i, ϕs ¼ 1� β;β is total solute vol-

ume fraction), inert solvent ðχis � 0Þ, and components that do
not self-interact [i.e., χij only depends on interaction energy (�ijÞ
between components i, j, i 6¼ j]. Further, we stipulate that the pair-
wise interactions χij are independent random variables, which are

drawn from a distribution with finite mean ν and variance r2

(Fig. 1A):

f ¼
XN

i¼1

ϕilogðϕiÞ þ
1

2

XN

i¼1

XN

j¼1

χijϕiϕj þϕslogðϕsÞ þ
XN

i¼1

χisϕiϕs

[1]

Jij ¼ @2ðf Þ
@ϕi@ϕj

¼ δij
ϕi

þ 1

ϕs

þ χij; J ¼
N

β
��I þ ��χeff : [2]

The point beyond which a mixture spontaneously phase sepa-
rates—the spinodal or the marginally stable state—occurs when
the minimum eigenvalue λmin of the Hessian matrix J (Eq. 2 and
SI Appendix) crosses zero [i.e., λminðJÞ ¼ 0]. The corresponding
eigenvector gives the initial direction of instability (SI Appendix,
Fig. S1), which leads to either condensation-type (ν#�NÞ or
demixing-type instabilities (ν$ � 2rffiffiffi

N
p � 1

1�β , 0;r>
ffiffiffi
N

p
2β Þ depending

on the values of ν,r (29, 34). During condensation, the instability
points toward dilute and dense phases with similar compositions
since individual components are strongly attractive on average, as
determined from the angle between the marginal eigenvector
and the initial composition being close to 0 or 180 (SI Appendix,
Fig. S1C). Conversely, during demixing, the initial instability,
whose direction is roughly perpendicular to the uniform mixture
(SI Appendix, Fig. S1C), points to phases with distinct composi-
tions. In general, solutions that demix contain unstable modes
beyond the marginally stable point, potentially leading to multi-
phase coexistence. Multiphase coexistence does not generically

occur in condensation transitions because of the band gap
between the smallest eigenvalue and the rest of the spectra
(SI Appendix, Fig. S1). Motivated by this, here we focus on
phase separation in solutions whose component interactions are
variable but not strongly attractive on average (ν� 0, r>

ffiffiffi
N

p
2β Þ.

After the initial instability, fluid mixtures undergoing spinodal
decomposition display rich dynamics and diverse multiphase
coexistence (Fig. 1A). To probe the kinetics and emergent
steady-state properties, we formulate a set of dynamical equa-
tions to track the evolution of N-independent volume fractions
[ϕiðr! , tÞ, i¼ 1::::,N] (Eq. 3). The temporal evolution of a com-
ponent’s volume fraction [ϕiðr! , tÞ] depends on diffusive fluxes
driven by gradients of chemical potential μiðfϕjg ¼ df

dϕi
Þ with a

mobility coefficient Mi, also known as conserved model B
dynamics (35, 36). We assume that all components obey
Mi ¼Mϕi, approximately recapitulating Fickian diffusion in the
limit of noninteracting, dilute components (SI Appendix).
Finally, we include surface-tension effects ensuring long-
wavelength stability by modifying the bulk chemical potentials
with a component-independent gradient term (μi ¼ df

dϕi
� κr2ϕi):

@ϕiðr! , tÞ
@t

¼r:
! ðMirμi

�
fϕjðr! , tÞg

�
Þ: [3]

We numerically simulate these nonlinear, coupled partial differ-
ential equations using Fourier space representations to
compute gradients and fluxes (SI Appendix). Unless specified
otherwise, a two-dimensional grid (L�L,L¼ 64Þ is initialized
with a uniform and equimolar solution (ϕi ¼ 1

Nþ1 ;β¼ N
Nþ1Þ with

small compositional fluctuations. For each simulation, we sam-
ple the interaction matrix χ from a normal distribution (Fig.
1A) with zero mean and specified variance (quenched disor-
der). At any time point, the state of the system is described by
the volume-fraction tensor ðN�L�LÞ, giving the volume frac-
tion of each component at every point in space. We can infer
the number of phases Nph by performing principal component
analysis (PCA) on this matrix after flattening the tensor along
the spatial dimensions and filtering out interfaces between
phases that vary in composition. We then identify the significant
eigenvalues that correspond to individual phases (Fig. 1B and
SI Appendix). We identify which phase each point in space
belongs to by first performing K-means clustering (with the
number of clusters as the number of phases from PCA) fol-
lowed by classification to assign individual points to the closest
phase by composition ϕ

!
N�1ðr! ; γ� phaseÞ. For all the points

assigned to a phase, we compute spatially averaged volume
fractions that characterize the bulk composition of the γ phase
ϕ
! ðr! Þγ (SI Appendix). These approaches enable us to character-
ize the spatiotemporal evolution and steady-state properties of
fluid mixtures that undergo phase separation through spinodal
decomposition.

Multiple Phases with Distinct Compositions Characterize Random
Fluid Mixtures. To explore phase behavior of multicomponent
solutions, we first simulate the dynamics of an initially equimo-
lar solution of N ¼ 16 components (labeled ϕi) whose pairwise
interactions are randomly sampled from χij �Normalð0,r¼
4:8Þ: This choice of parameters ensures spontaneous phase sep-
aration with multiple initial unstable modes. At steady state,
the mixture exhibits heterogeneous, multiphase coexistence
(Fig. 1C). The steady-state solution has four coexisting phases
(Fig. 1D) that are enriched in a distinct, yet characteristic number
of components per phase (Fig. 1E and SI Appendix). Such multi-
phase coexistence with differing compositions occurs generically
for different choices of parameters (SI Appendix, Fig. S2).

A key question is to understand how the steady-state properties
of the phases relate to the interaction distribution between compo-
nents. To explore this, we ran many simulations under identical
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conditions while resampling from the interaction matrix specified
above. Although the precise values of steady-state compositions
vary between different simulations, there were striking statistical
similarities between both the number of distinct phases at steady
state and the temporal dynamics leading to this steady state (in
Fig. 2A, the green line is the trajectory in Fig. 1 C–E). This statisti-
cal convergence in the expected number of coexisting phases is

independent of the choice of mobility parameter (SI Appendix,
Fig. S3B), simulation length (SI Appendix, Fig. S3C), or specific
simulation parameters (SI Appendix, Fig. S3D).

The compositions of the steady-state phases also exhibit sim-
ilarities. To characterize the compositions at steady state, we
compute the angle (Fig. 2B) between compositions of the pairs
of coexisting phases ðhαβÞ and also measure the number of
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Fig. 1. A model for phase separation in multicomponent fluid mixtures. (A) A schematic depicting that the interactions between pairs of components
are randomly drawn from a distribution and encode varying emergent properties. (B) Schematic depicting postprocessing analyses on simulation data to
identify the coexisting phases from PCA. (C) Plots depict volume-fraction profiles of 16 components (labeled ϕ0 to ϕ15) at steady state from a single tra-
jectory with identical color-bar scales (0,0:75Þ. Darker colors represent regions of higher volume fraction, and simulation parameters are presented in the
text and SI Appendix. (D) The different phases (labeled one to four) present at steady state in A are depicted here. (E) The partition ratio (the ratio of the
average volume fraction in a phase over the total initial volume fraction) of all components is plotted for each phase (x axis) at steady-state conditions
shown in A. The highlighted components are enriched in those respective phases, and the dashed line represents no enrichment (partition ¼ 1).
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components enriched in each particular phase ðNenriched).
Phases with hαβ close to zero have largely similar compositions,
whereas those close to p/2 are enriched in different sets of

components. Fig. 2C shows the distribution pðhαβÞ calculated
across multiple simulations, demonstrating that different phases
have composition vectors that are largely orthogonal, with an
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Fig. 2. Multiple phases with distinct compositions characterize random fluid mixtures. (A) Number of coexisting phase (y axis) versus simulation time
(x axis, log scale) for simulations with n ¼ 16, χ � Nð0,σ ¼ 4:8) (the same conditions as in Fig. 1C). The solid line represents the mean of 50 different trajec-
tories, the filled regions represent one SD, and the green line represents the specific trajectory whose steady-state properties are shown in Fig. 1 C–E. (B)
A schematic illustrating how compositional observables are computed from steady-state compositions [i.e., the angle between coexisting phases (θÞ] and
the number of enriched components per phase are computed. In the example, an initially unstable phase of three components demixes to form two
phases (α,β) that are enriched in a distinct number of components (shown in the legend). (C) Probability distribution function (pdf) and cumulative distri-
bution function (cdf) of angles between coexisting phases at steady state for simulation parameters in A. (D) Probability (pNenr ) distribution of the number
of enriched components (x axis, Nenr) per phase at steady state for simulation parameters in A. (E) Individual snapshots of the simulation trajectory
reported in Fig. 1C labeled with existing phases (one to four from steady state, white or unlabeled if like the initial equimolar solution). The steady-state
labels are shown in the color bar, whose bulk compositions are used to assign phase labels at earlier times (SI Appendix).
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exponential decay in the probability of phases being more simi-
lar by composition. Since individual concentrations must be
positive and obey overall mass balance, this indicates that coex-
isting phases are mostly enriched in distinct sets of components.
The number of enriched components per phase pðNenrichedÞ is
distributed around values of Nenriched ¼ 3, 4, 5 (Fig. 2D). This is
consistent with the distinct phases being orthogonal in compo-
nent partitioning <Nenriched >� Nþ1

<phases>
� 4. This observed

compositional orthogonality is independent of the specific sim-
ulation parameters (SI Appendix, Fig. S3 E and F). Overall, the
steady-state phase behavior of random fluid mixtures is charac-
terized by multiple coexisting phases with distinct compositions.

A Simple Random Matrix–Derived Theory Predicts Steady-State
Phase Behavior of Fluid Mixtures. The consistency in dynamic
and steady-state properties of random mixtures motivated us to
explore whether we could unify the emergent phase behavior
through a theoretical framework. First, we asked whether the
steady-state multiphase coexistence was related to the proper-
ties of the initially uniform mixture, as characterized by the
Hessian of the free energy. We ran simulations across several
conditions (varying r,NÞ and computed both the number of
unstable modes at the beginning of each trajectory (Nλ<0 is the
number of negative eigenvalues from linear stability analyses)
(SI Appendix) as well as the number of coexisting phases at
steady state (NphÞ. Strikingly, when examined across simula-
tions with diverse parameters, these exhibited a linear relation
where Nph �Nλ<0 þ 1 (Fig. 3A). This implies that each linearized
unstable eigenmode typically gives rise to a unique coexisting
phase at steady state (SI Appendix). We note that this relation is
statistical in nature (i.e., for a given number of unstable modes,
there exists a distribution of the number of observed phases that
is strongly concentrated at Nph �Nλ<0 þ 1, with small nonzero
probabilities of observing more or fewer phases). Since the
eigenvectors corresponding to these initial unstable modes are
largely perpendicular to each other (SI Appendix, Fig. S4A),
this may contribute to the observed compositional orthogonal-
ity between coexisting phases at steady state (Fig. 2C and SI
Appendix, Fig. S3E). Overall, our results suggest that the num-
ber of coexisting phases at steady state in fluid mixtures under-
going phase separation by spinodal decomposition can be
computed by simply computing the number of unstable modes
in the uniform mixture. This is a striking conclusion because in
general, the number of stable states in a nonlinear free energy
functional is independent of the number of unstable modes in
the initial dynamics.

The number of unstable modes or negative eigenvalues can
be counted using Wigner’s semicircle law for random matrices,
giving <Nph > ¼N�F2r

ffiffiffi
N

p λ#� N
β

� �
þ 1 (SI Appendix). Here,

F is the cumulative distribution function (cdf) of the semicircle
distribution whose eigenvalues are between 62r

ffiffiffiffi
N

p
, and the

argument is the entropic cost that needs to be offset to phase
separate (SI Appendix). Since the eigenvalues of the semicircle
distribution are equally spaced on average, the number of
phases can be approximated as

Nphases �
N 1�

ffiffiffi
N

p
2βr

� �
þ 1

2
: [4]

Eq. 4 implies that when r¼ α
ffiffiffiffi
N

p
, the number of phases scales

linearly with the number of components. In the next section, we
will discuss a biophysical interpretation of the proportionality
constant α. When r<

ffiffiffi
N

p
2β , there are no unstable modes, and the

uniform phase remains stable, as expected. If the interactions
between species are strongly variable (r� ffiffiffiffi

N
p Þ, Eq. 4 implies

a maximum of Nþ1
2 coexisting phases at steady state. Interest-

ingly, this asymptotic scaling is significantly less than the upper
constraint of Nþ 2 (or N if temperature and pressure/volume

are fixed) originally formulated by Gibbs (16). Note that this
asymptotic scaling of N=2 likely arises from the competing net-
work of interactions between components and should be
expected to hold even when the average of the interaction dis-
tribution, ν, is nonzero, which at most, adds only one single
orthogonal eigenmode (SI Appendix).

After the initial instability, linear stability analyses predict
that each unstable mode grows exponentially (exp� aλt)
(SI Appendix), so the characteristic time for a phase to form
scales as tph / 1=λ. Since the unstable eigenvalues are equally
spaced on average ðλmin ¼ λ1 < λ2 < ::: < λk < ::: < λγ < 0 s:t:
λk � λkþ1 ¼ constantÞ , the typical time for the kth phase to
macroscopically form is larger for higher k in tph¼k / �1

<λk>
(the

proportionality constant can be approximately estimated)
(SI Appendix). This relation, although an approximation, pre-
dicts multistaged phase-separation kinetics; newer phases mac-
roscopically emerge at later times in a sequential order—
predictions that are consistent with observations (Figs. 2A and
3D and SI Appendix, Fig. S4B). This is made vivid by tracking
the temporal evolution of different phases for the example tra-
jectory shown in Fig. 1C (Fig. 2E and SI Appendix). Statistical
analyses of multiple trajectories (SI Appendix) confirm that
most phases (>99%) demix from the initially unstable phase,
albeit at different times, but do not rule out the possibility that
on rare occasions (<1%), phases may emerge by demixing
from other coexisting phases (SI Appendix, Fig. S4C). Together,
these results support a model derived from random-matrix the-
ory that connects statistical properties of the initially homoge-
neous solution to the dynamics, compositional features, and
number of steady-state phases in fluid mixtures with randomly
interacting components.

A Simple Model Predicts Steady-State Behavior of Random Mix-
tures from Different Ensembles. We next sought to explore
whether we could identify ensembles that connect microscopic
parameters to different emergent phase behavior—including by
varying number of species (N), mole fraction (βÞ, or the shape
of the interaction distribution. In particular, Eq. 4 suggests that
scaling the variance with the number of components, namely
r¼ rðNÞ /N1=2 [i.e., r¼ αN1=2 ðα� ensembleÞ], should lead to
linear encoding between the number of steady-state phases
and components.

To probe this more thoroughly, we ran simulations across a
wide range of ðN,α,rÞ: In the α-ensemble, the predicted scaling
of number of coexisting phases from Eq. 4 scales linearly with N
and saturates with increasing α, in agreement with theoretical
predictions (Fig. 3 C and D). By contrast, in the constant
r-ensemble, theory predicts an optimal number of components
that maximizes the number of coexisting phases at steady state
[Nopt

components � 4
3r
� �2

] (SI Appendix), which broadly agrees with
simulation predictions (Fig. 3 E and F). Intuitively, with fewer
components, phase separation is promoted due to lower entropic
costs, but the maximum number of coexisting phases is bounded
by Nþ1

2 . Conversely, in the limit of many components, the system
is stable and does not phase separate (entropic stabilization /N,
whereas enthalpic terms scale as r

ffiffiffiffi
N

p
), thus leading to nonmo-

notonic scaling. In all cases, the predictions deviate from simula-
tion at either low N or r, when fluctuations in the unstable
modes of the eigenspectra are of order unity. Theoretical correc-
tions based on Tracy–Widom extreme-value statistics reduce the
gap between theory and simulation, particularly at low N,r (SI
Appendix, Fig. S5A). Finally, simulations match theory for equi-
molar solutes with lower total solute volume fractions (lower β)
(SI Appendix, Fig. S5B), and theoretical predictions continue to
exhibit similar scaling relationships (SI Appendix, Figs. S5 C–F) in
regimes where simulations are numerically inaccessible
(α� 1,r� ffiffiffiffi

N
p Þ. These results show that increasing the variance

of interactions proportionally with the number of components
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(for example, by increasing the number of interactions sites)
allows for encoding more phases. Conversely, sampling more
components from a distribution of fixed variance (for example,
all components have the same number of interaction sites) has a
maximal number of coexisting phases.

Active Turnover of Components Modulates the Number of Coexisting
Phases at Steady State. In most biological systems, interacting
components are actively being produced and degraded (37). To
study how such chemical reactions impact phase behavior, we
modify our dynamical equations to

 = 1.2

 = 1.5

5 10 15 20

2

4

6

8

N
ph

as
es

Ncomponents

0.6 0.8 1.0 1.2 1.4

2

4

6

8

N
ph

as
es

N=20

N=16

N=12

(i,j)  = ( =0, )

 ensemble ensemble
Constant 

C

E

D

F

0 1 2 3 4 5 6

N <0

2

4

6

8

10

r =0.99

N
ph

as
es y=x+1

A B

1 2 3 4 5 6

2

4

6

N
ph

as
es

N=20

N=12
N=16

5 10 15 20

2

4

6

N
ph

as
es

Ncomponents

=5.0

=4.0

=3.0

Fig. 3. A simple scaling predicts steady-state behavior of random mixtures from different ensembles. (A) The number of phases at steady state (y axis) versus
the number of negative eigenvalues of the initial equimolar mixture. Histograms represent simulation results that are collapsed from a range of different
N,σ, and the solid line represent the equation y ¼ xþ 1. The correlation coefficient is reported between the mean of simulation results and the solid line.
(B) A schematic depicting the two interaction ensembles with different variance scaling. The α-ensemble consists of components whose variance in interac-
tions scales with the number of distinct species, and the σ-ensemble has a distribution of fixed variance. (C and D) Variation of the number of coexisting
phases at steady state with the number of components (linear scaling) and different values of α (monotonic saturation) in the α-ensemble. Solid lines repre-
sent theoretical predictions based on the Wigner formula, dots represent the mean of simulation results, and vertical dashes represent one SD around the
mean. In each plot, darker lines represent higher values of α and N, and different marker types are employed to reinforce this. (E and F) Variation of the num-
ber of coexisting phases at steady state with the number of components (nonmonotonic) and different values of σ (monotonic saturation) in the fixed
σ-ensemble. Solid lines represent theoretical predictions based on the Wigner formula, dots represent the mean of simulation results, and vertical dashes rep-
resent one SD around the mean. In each plot, darker lines represent higher values of σ and N, and different marker types are employed to reinforce this.
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dϕi

dt
¼ r:

! ðMi r
!
μiÞ þ

X
j

rij, [5]

where rij are sets of reactions (fjg) that change the fluxes of
species i. In the simplest case of turnover, each component is
produced at fixed rate k and degraded at rate koff ¼ kN=β. In
the absence of phase separation, each component’s steady-state
volume fraction is ϕss

i ¼ kon
koff

¼ β
N. As before, when β¼ N

Nþ1, this
corresponds to an equimolar solution [i.e., ϕss

i ¼ 1=ðNþ 1Þ].
We then perform linear stability analyses (SI Appendix),

which show that phase separation is suppressed by high rates of
turnover (i.e., larger values of koff ), consistent with previous
theoretical work in binary or ternary mixtures (19, 24). Active
turnover effectively introduces local mixing by cyclically synthe-
sizing and degrading components, which counteract spatial
variations that arise from phase separation. When the rate of
turnover becomes dominant to induce mixing at large length
scales, it effectively decreases the band of unstable eigenvalues
that contribute to phase separation. The unstable eigenvalues
that continue to persist are orthogonal to each other and should
continue to drive multiphase coexistence, albeit with lower num-
bers of steady-state phases. More generally, the higher the rate
of turnover, the lower the number of steady-state phases (SI
Appendix). Further, our theory predicts that the number of coex-
isting phases at steady state can be tunably suppressed by vary-
ing the absolute rates of turnover (kon,koff Þ, even when keeping
their ratio constant (i.e., the overall fluid composition at steady
state remains equimolar and identical to the initial conditions,
with a scaling of nssphases,k � nphases:k¼0 /� k

ffiffiffi
N

p
r ) (SI Appendix). To

test this hypothesis, we ran simulations in which we varied the
rate of turnover while keeping their ratio constant (increasing
both kon,koff for all components) and averaged observables
across replicate trajectories. We find that increasing rates of
active turnover leads to a decreasing number of coexisting
phases (Fig. 4A), and simulations largely correlate with the sim-
ple theoretical prediction (Fig. 4B). Replacing the linearized
approximation with the nonlinear Wigner cdf (SI Appendix) pro-
vides substantially better agreement between theory and simula-
tion (Fig. 4B, green line). Overall, this suggests that active
turnover of components can serve as a route to tunably modulate
multiphase coexistence in random fluids even without altering
the relative or overall composition of such mixtures.

Discussion
Over the past several years, there has been a growing apprecia-
tion of the role of multicomponent and coexisting phases inside

a cell. These phases, or condensates, compartmentalize many
interacting species and pathways to enable diverse yet specific
functions across cell types and organisms. More generally, fluid
mixtures with many phases and components are prevalent in
biology, soft matter, and industry. Yet, we still do not under-
stand how numerous interacting components encode the emer-
gent multiphase behavior. The goal of this study is to develop a
simple model of the dynamics and steady-state phase behavior
in fluid mixtures with many components. We choose the inter-
actions between components from an underlying distribution
and thereby, can use random-matrix theory to analyze the
resulting dynamics. Through simulation and theory, we find
that spontaneous phase separation of such mixtures is charac-
terized by staged phase-separation dynamics and multiple coex-
isting phases at steady state with distinct nonoverlapping
compositions. Importantly, our model suggests that these char-
acteristics do not require fine-tuning of composition or interac-
tion parameters; rather, they are an emergent property of fluid
mixtures with many components with random interactions.
Whether staged phase-separation kinetics is common to or rel-
evant in biological systems remains unexplored but may be a
potential mechanism to temporally orchestrate biochemical
pathways. Subsequently, we design different component ensem-
bles that encode linear or optimal scaling of the number of coex-
isting phases versus components, which we validate through
simulation and random-matrix theory. Strikingly, we identify an
upper bound for the maximum number of coexisting phases in
random mixtures, derived from dynamical considerations, that is
asymptotically lower than the Gibbs phase rule. Random inter-
actions effectively introduce competing interaction networks,
which likely limit the maximal number of possible coexisting
phases. Motivated by the observation that biological fluids often
exhibit component turnover such as synthesis/degradation of
biomolecules, we show that active turnover of components can
tunably modify steady-state multiphase coexistence, even with-
out altering overall fluid composition. An exciting next step will
be to characterize how reaction networks that exhibit complex
topology and spatial features influence phase behavior in multi-
component mixtures, building on ideas initially introduced for
two- or three-component fluids (19, 25).

The model formulated herein is only the first step in being
able to design multicomponent phases in terms of their indi-
vidual components. Recently, there has been tremendous
progress in characterizing the sequence to the phase-
behavior relationship of individual proteins and nucleic acids
(14, 26, 38), composition of different condensates (39–41),
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Fig. 4. Active species turnover tunably modulates multiphase coexistence at steady state. (A) The schematic depicts constant production and first-order deg-
radation of components. The graph shows the number of phases versus simulation time (in log scale) across a range of reaction rates in a system with N¼ 20
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and regulated formation of condensates at specific locations,
often through nucleation (42, 43). Soft matter colloidal sys-
tems (44, 45), DNA-based nanotechnology (12, 46), program-
mable magnetic materials (47), and multiplexed protein
design offer diverse attractive routes to both experimentally
test predictions and serve as platforms to enable design of mul-
tiphase fluid mixtures. While our numerical model is focused
on characterizing spinodal decomposition of equimolar fluid
mixtures, extensions to larger systems (N ? 20) with varying
composition and incorporation of approaches to study nucle-
ation dynamics, including recent graph theory–based models
(48), will facilitate programmable design of equilibrium multi-
phase coexistence. An important related problem is the design
of targeted multiphase mixtures whose compositions and inter-
actions are specifically tuned, not random. Computational and
theoretical approaches for programming phase behavior in
these systems will enable material design using synthetic and
biological constituents. Another exciting direction is to incorpo-
rate energy-consuming processes as part of the design. Exam-
ples include nonreciprocal interactions, chemical reaction net-
works, molecular motors, and motile particles—all of which are

characteristic of living systems. More generally, studying the
interplay of nonequilibrium processes and multiphase behavior
in fluid mixtures will be an exciting and rich area for biology
and soft matter physics.

Materials
Phase-field simulations and subsequent data analyses were performed using
custom code written in python. We employ the results from random-matrix
theory and dynamical systems analyses in deriving the theoretical scaling rela-
tionships presented in the text. More details about theory, simulation, and
numerical methods for postprocessing are available in SI Appendix.

Data Availability. Code has been deposited in GitHub (https://github.com/
krishna-shrinivas/2021_Shrinivas_Brenner_random_multiphase_fluids).
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