
   1 

 

Multiphase coexistence capacity in complex fluids  
 
Krishna Shrinivas a,* and Michael P. Brenner b,c
a NSF-Simons Center for Mathematical & Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138, USA 
b School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA 
c Department of Physics, Harvard University, Cambridge, MA 02138, USA 
*Correspondence should be addressed to krishnashrinivas@g.harvard.edu  
 
Complex fluids like the cytoplasm comprise hundreds of species organized into many coexisting phases. How 
molecular interactions, reflecting sequence, design, or functional constraints, dictate multiphase coexistence 
is a major open question. To answer this, we consider models of multicomponent fluids with both designed 
and random interactions. When crosstalk is introduced, we show that coexisting phases lose specificity 
beyond a common threshold. In a sequence model, we demonstrate that phase capacity is limited by sequence 
length and grows logarithmically/linearly with sequence length/number. These results provide a general route 
to program multiphase coexistence from molecular features. 
 
Introduction - Life is rife with spatially inhomogeneous ma-
terials. A prominent example is the cellular milieu which is 
organized into dozens of coexisting compartments called 
condensates [1,2]. Individual condensates contain tens of 
protein and nucleic acid components  [1–4] whose inter-
action networks span a wide range of strengths and spec-
ificities  [5–8] and often assemble by phase separation. A 
major outstanding question lies in predicting how micro-
scopic interactions and molecular features, reflecting se-
quence-derived, functional, and evolutionary constraints, 
encode for macroscopic multiphase coexistence. 

The conditions for thermodynamic equilibria and 
multiphase coexistence are particularly challenging to de-
lineate in materials with many components. This has lim-
ited the characterization of phase behavior to fluids with 
very few components (<5)  [9–11]. Rather than focus on 
exhaustive enumeration, an alternative strategy is to re-
late statistical ensembles of interacting molecules to their 
emergent properties. Motivated by pioneering work by 
Sear and Cuesta [12] and others  [13], a number of math-
ematical approaches have emerged to dissect the point of 
the spinodal manifold i.e. concentrations where a fluid be-
gins to spontaneously phase separate, for fluids with ran-
dom and partially structured interactions  [14–16]. These 
methods are limited to identifying the spinodal, without 
predicting the number or composition of coexisting 
phases at steady state. More recently, approaches from 
non-equilibrium thermodynamics have begun to make 
progress in tackling this question [17,18]. Phase-field 
models have been deployed to predict not only steady-
state properties but also out-of-equilibrium dynamical be-
havior for randomly interacting fluids [17]. Numerical 
schemes rooted in linearly irreversible and mean-field 
thermodynamics [18] identify potential thermodynamic 
equilibria across a broad range of interaction parameters.  
Whether these distinct methods find similar steady-states 
is not understood although there is broad agreement 
when interactions are purely random. While characteriz-
ing random fluids represents a first step [17], interactions 
amongst molecules in cells and other complex fluids are 
non-random, reflecting correlations derived from 

sequence, functional, or evolutionary constraints. How 
non-random biomolecular interactions encode for multi-
phase coexistence is not known. This, in turn, limits our 
ability to design molecular features to program or engi-
neer target macroscopic behavior.   

In this paper, we investigate and characterize 
multiphase coexistence in fluids whose component inter-
actions are non-random by combining phase-field simula-
tions, mean-field thermodynamics, and eigen-mode 
counting arguments. We first explore a simple model in 
which components interact through strong, specific inter-
actions within a group (or block) and through non-specific 
random crosstalk with all other components. When cross-
talk is higher than a sharp threshold, we identify a transi-
tion where number and composition of coexisting phases 
change from those encoded by highly structured blocks to 
random fluids i.e., many decoherent phases. Inspired by 
interacting DNA sequences and  low-complexity proteins, 
we then study a model where interactions and concomi-
tant crosstalk are encoded by sequence-features, para-
metrized by length 𝑅𝑅 and interaction strength 𝐽𝐽. With 𝑁𝑁  
randomly generated sequences, we find a maximum 
number (or capacity) of coexisting phases (𝑁𝑁𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚 ≈
min (𝑅𝑅 + 1, 𝑁𝑁

2
) ) when interactions are strong. With weak 

or moderate interactions, we identify a universal scaling 
law connecting sequence features to multiphase capacity 
(𝑁𝑁𝑝𝑝ℎ ∝ 𝑁𝑁log (𝑅𝑅)). Together, our results provide an avenue 
to program multiphase coexistence by tuning molecular 
features. 

Model - We employ a regular solution or Flory-Huggins 
like formalism to describe the free-energy for a mixture of 
N interacting species in an inert solvent at fixed volume 
and temperature (SI Theory). The component volume 
fractions are defined as 𝜙𝜙𝑖𝑖 . For simplicity, we assume 
equimolar fluids where interactions 𝜖𝜖𝑖𝑖𝑖𝑖are purely hetero-
typic (i.e., no self-interactions) and derived from an under-
lying model of interactions (Figure 1). 
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We  investigate phase behavior through orthogonal 
approaches (SI Simulations; Figure 1). Briefly, we simu-
late  the spatiotemporal evolution of volume fractions 
( 𝜙𝜙�⃗ 𝑖𝑖; 𝑖𝑖 = 1,2, . . ,𝑁𝑁 ) on a 2D grid employing conserved Model 
B dynamics. These physically-grounded, albeit computa-
tionally intensive, phase-field simulations (PF), predict 
spatial dynamics and steady-state properties. We then 
use an orthogonal numerical free-energy (NF) optimiza-
tion, which is driven by non-physical mean-field dynam-
ics [18] but can identify approximate number and 
composition of thermodynamic equilibria and is 
computationally faster (~1000x faster than PF). For both 
numerical approaches, we average over multiple initial 
conditions (concentrations, interactions) to measure 
statistical features of multiphase coexistence i.e. average 
number and composition of coexisting phases. Building 
on  [17], we derive another estimate for the number of 
steady-state phases from the eigen-spectra of the 
Hessian matrix (SI Theory) as 𝑁𝑁𝑝𝑝ℎ =< 𝑛𝑛𝜆𝜆(𝐽𝐽∗)<0 > +1.  

We first these different approaches on a previously 
characterized model of multicomponent fluids with purely 
random interactions  [17]. Here, eigen-mode counting can 
be approximated by an expression based on Random-
Matrix Theory (RMT). Across a wide range of parameters, 
we find that simulations (PF and NF) and RMT agree on 
average number of phases at steady-state (Figures S1A-
B), although NF mildly overestimates number of phases. 
Both simulations predict similar distributions of composi-
tions of coexisting phases (Figure S1C). Finally, spatial 
dynamics from PF simulations show that random fluids 
exhibit the expected scaling laws (Figure S1D) that incor-
porate mechanisms of Ostwald Ripening and growth by 
coalescence [19]. Together, this suggests that the diverse 
methods we employ (eigen-mode, PF simulation, and NF) 
identify similar steady-state features for random fluids. To 
extensively characterize parameter space in what follows, 
we will especially leverage the eigen-counting method, 
which is ~106 − 109 faster than simulations.  

Blocky fluids – We first explore how structure in 
interactions influences phase behavior in a model of 
blocky fluids (Figure 2A). In this model, components (𝑁𝑁) 
are split into blocks with strong and specific intra-block 
interactions ( 𝑚𝑚 = #_blocks, 𝜖𝜖𝑏𝑏 =specific interactions). 
Crosstalk between species is introduced through random 

additive interactions (𝜖𝜖𝑟𝑟 ∼ 𝑁𝑁(0,𝜎𝜎)). In the limit of very low 
cross-talk and strong interactions, it is straightforward to 
see that the number and composition of equilibrium 
phases matches individual blocks. Starting with two 
blocky phases (Figure 2B), we increase cross-talk 
between components by increasing 𝜎𝜎. When cross-talk 
crosses a threshold, we find that the number of phases 
deviate from the block design (Figure 2B, simulations) 
and approaches expectations for a purely random fluid 
(Figure 2B; black line). While low cross-talk does not 
affect number of coexisting phases, we find that phase 
separation kinetics is modestly promoted (Figure S2A). 
We next sought to characterize how compositions of 
emergent phases change with increasing cross-talk. We 
measure the similarity of coexisting phases to the blocky 
phase (SI Analyses) through a relative angle 𝜃𝜃  (Figure 
2C). Smaller values represent phases whose 
compositions overlap with blocks and larger values are 
orthogonal (and thus decoherent) to blocks. We find that 
the composition of coexisting phases becomes 
increasingly random beyond a cross-talk threshold 
(Figure 2C). These tradeoffs in number and composition 
are recapitulated by all our methods (Figures S2B-C). 

 We next sought to extensively characterize this 
tradeoff by leveraging eigen-mode counting. To ensure 
blocky phases in the absence of cross-talk, we intialize 
with a range of strong specific interactions (Fig S2D). 
Across many parameters, we measure the threshold of 
crosstalk required to disrupt blocky phases (𝜎𝜎∗). We find 
that crosstalk threshold, or 𝜎𝜎∗, is largely independent of 
number of species (Figure S3A) but depends on number 
of blocks (m) and strength of interactions 𝜖𝜖𝑖𝑖𝑖𝑖 (Figure S3B-
C).  This dependence is well explained by a linear fit 
(Figure S3D). When we rescale crosstalk with our inferred 
fit, we find a universal collapse in the number of phases 
(Figure 2D).  Here, the number of phases is normalized 
by the number of blocks, and is 1 below the threshold.  
Across a wide range of 𝑁𝑁,𝑚𝑚, 𝜖𝜖𝑖𝑖𝑖𝑖 , conditions with similar 
𝑁𝑁/𝑚𝑚 collapse on a master curve (Figure 2D – black and 
green points) but don’t depend on number of blocks (m) 
or strength of interaction 𝜖𝜖𝑖𝑖𝑖𝑖. (Figures S3E-F). Overall, our 
results show a universal trade-off from specific phases to 
random decoherent phases for blocky fluids beyond a 
single rescaled threshold of crosstalk. 

Figure 1: Model for probing multiphase coexistence in multicomponent fluids with non-random interactions  
Molecular interactions are derived from the underlying design strategy (random, blocky, or sequence-based) and resultant interaction-matrix is used 
to assay phase behavior through complementary approaches (phase-field simulations, numerical free energy (NF) optimization based on [18], and 
eigen-mode counting from the Hessian matrix of the free-energy). See SI for details of approaches. 
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Sequence-model – Towards more realistic models of 
biological molecules, we next consider interactions 
between species mediated by an underlying sequence. 
Motivated by a recent model  [16], we describe each 
molecule as a sequence of length 𝑅𝑅 (or 𝑅𝑅 domains) with 
a continuous value associated with each position/domain. 
These values might describe protein features such as 
hydrophobicity or charge  density or represent 
complementarity of DNA barcodes. For simplicity, we 
assume interactions between pairs of molecules is 
additive (Figure 3A, SI Theory), with interaction strength 
set by 𝐽𝐽 . In our simulations molecules with similar 
sequences interact favorably (𝐽𝐽 < 0). Finally, we generate 
N species by normally sampling each feature as depicted 
in Figure 3A. This is akin to sampling a distribution of DNA 
barcodes where complementarity of interacting patches 
on the barcode is randomly sampled.  

 To investigate how sequence encodes for phase 
behavior, we varied strength and number of features. 
Predictions from PF Simulations, NF, and eigen-mode 
counting agree on the number of steady-state phases with 
changing sequence length or interaction strength (Figures 

S4A-B). PF simulations show that when sequences are 
short (𝑅𝑅 =2), the maximum number of phases is ∼ 𝑅𝑅 + 1. 
This upper limit on phase capacity is validated by eigen-
counting across a wider range of sequence features 
(Figure 3B; grey lines; Figure S5) when interactions are 
strong and sequences are short (𝑅𝑅 ≪ 𝑁𝑁) . With larger 
lengths, sequences, and thus, interactions between 
molecules become less correlated. In the limit of large 
sequences (𝑅𝑅 ≫ 𝑁𝑁 ), we find that the maximum phase 
capacity is limited by the number of species/barcodes (N) 
as 𝑁𝑁𝑝𝑝ℎ,𝑚𝑚𝑚𝑚𝑚𝑚 ∼

𝑁𝑁+1
2

 (Figure 3B; black line). Note that this 
limit collapses to the limit expected from purely random 
fluids that we showed before  [17]. When number of 
species (N) or interaction strength (J) is constant, we find 
a logarithmic scaling between phase capacity and 
sequence length (Figure S4C-D; 𝑁𝑁𝑝𝑝ℎ,𝑠𝑠𝑠𝑠 ∝ 𝛾𝛾 log(𝑅𝑅) +
 𝑔𝑔(𝑁𝑁, 𝐽𝐽). This suggests that increasing sequence length 
provides only a modest increase in encoding phase 
capacity. The slope i.e. 𝛾𝛾 , is nearly independent of 
interaction strength but depends linearly on number of 
sampled species (Figure S4E). The intercept i.e. 𝑔𝑔(𝐽𝐽,𝑁𝑁), 
although non-monotonic, varies slowly at higher strengths 

Figure 2: Specificity vs. cross-talk tradeoff in blocky fluids  
A. A model of interactions in blocky fluids comprising a specific intra-block component and random additive crosstalk.  
B-C. Variation in number of steady-state phases and compositional similarity to a blocky phase with increasing cross-talk (𝜎𝜎). Black dots represent 
averages and dashes represent standard-deviation around averages over 50 PF simulations. In panel B, grey dashed line represents expectation from 
block considerations i.e. 2 specific phases, and black line represents theoretical predictions. All conditions are at N=16, m=2. 
D. A master curve describes scaled number of coexisting phases (𝑁𝑁𝑝𝑝ℎ/𝑚𝑚) versus renormalized crosstalk ((𝜎𝜎 − 𝜎𝜎∗)/𝜎𝜎∗) for specific values of 𝑁𝑁

𝑚𝑚
 (black- 

=12, green=8). As specified elsewhere, 𝑁𝑁 is number of species, 𝑚𝑚 is number of blocks, 𝜎𝜎 is scale of cross-talk, and 𝜎𝜎∗(𝑚𝑚, 𝜖𝜖𝑖𝑖𝑖𝑖) is inferred threshold. 
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(J) or sequence number (N) (Figure S4F). Based on this, 
we observe an approximate scaling collapse when 
interactions are not weak of the form 𝑁𝑁𝑝𝑝ℎ

𝑁𝑁
∼ log (𝑅𝑅) across 

a range of conditions (Figure 3C). When length is fixed, 
our model predicts a linear increase in phase capacity 
with number of species ( 𝑁𝑁𝑝𝑝ℎ ∝ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑅𝑅) , which we 
observe across a range of interactions (Figure 3D). This 
shows that even generating random sequences gives rise 
to a linear increase in phase capacity. Together, our 
results show that sequence features constrain multiphase 
capacity in characteristic ways.  

 In summary, we explore how non-random 
molecular interactions map to spontaneous phase 
behavior. Towards this, we employ different methods, 
namely phase-field simulations, mean-field NF 
optimization, and eigen-mode counting, which we validate 
for a previously characterized model of random fluids 
(Figure S1)  [17]. We first study a model of blocky fluids, 
where interactions between components comprise both 
specific intra-block and random crosstalk parts. We 
identify a universal trade-off that leads to a cross-over 

from block-specific phases to random decoherent phases 
beyond a single rescaled threshold  (Figure 2), suggesting 
interesting but distinct parallels to tradeoffs in Hopfield 
networks and molecular self-assembly [20].  We next 
define and characterize a sequence-based model of 
interactions (Figure 3). When sequences are randomly 
generated, we show that phase capacity grows 
logarithmically/linearly with sequence length (R) / number 
(N). We find that the maximum phase capacity is limited 
by sequence length or number of species i.e., min (𝑅𝑅 +
1, 𝑁𝑁+1

2
). Together, these results connect features of 

interaction networks to emergent multiphase coexistence. 

Programmable DNA barcodes or charged 
peptides [21,22] offer experimentally instantiable 
avenues to test our predictions. While we employ an 
additive model for simplicity, the link between sequence 
and interactions is often non-linear [23] and will be an 
important avenue for future research. More generally, 
developing theories and methods to predict steady-state 
coexistence and nucleation kinetics in multicomponent 
and multiphasic fluids represents an exciting frontier for 
complex living materials. 

Figure 3: Sequence features constrain multiphase capacity  
A. In the sequence-based model, each molecule contains a sequence of length R (or R interaction domains/features/patches). Each patch interacts 
with strength J to the same patch on another species. For generating an ensemble of N sequences, each feature is randomly drawn from a normal 
distribution. Interactions between two distinct species are additive across the features. 
B. Variation of number of steady-state phases with increasing strength of interactions for different sequence lengths. Grey lines represent R=1,2,3 
and black line is R=512. In all conditions, N=16. 
C. Variation of scaled phase capacity (𝑁𝑁𝑝𝑝ℎ/𝑁𝑁) versus sequence length (R) for different number of species. Interaction strength is fixed at J=-2. 
D. Variation of number of phases versus number of species in the limit of strong energies. Here sequence length is fixed at 𝑅𝑅 = 8. 
In all cases, markers represent average over 50 trials and dashes represent standard deviation over 50 trials.  
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Materials and Methods 
Custom code was written in python for phase-field simulations, suitably 
modifying interactions to non-random models from 
https://github.com/krishna-shrinivas/2021_Shrinivas_Brenner_ran-
dom_multiphase_fluids. NF approach was adapted from [18]. More de-
tails are provided in Supplementary Information.
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Figure S1: Dynamics and multiphase behavior in random fluids (A-B). Variation of number of steady-state phases versus width of interaction 
distribution and number of components. Green dots/dashes are means/standard-deviations over 50 NF trajectories and black dots/dashes are 
means/standard-deviations over 50 PF Simulations. Grey lines are derived from random-matrix theory based approximation of eigen-mode counting. 
In panel A, the number of components if fixed at N=16, and in panel B,  the width of interactions is 𝜎𝜎 = 5 . (C) Distribution of angles between 
compositions (𝜃𝜃) of coexisting steady state phases from PF simulations (black) and NF model (green). (D) Statistics of merger/growth events of 
phases < 𝑟𝑟 > versus time (t), with an inferred power law scaling exponent 𝑏𝑏, for N=16 species and 𝜎𝜎 = 4.8. 
  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.512909doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512909
http://creativecommons.org/licenses/by-nc-nd/4.0/


Multiphase coexistence capacity in complex fluids, Shrinivas and Brenner 

   7 

 
Figure S2: Dynamics and multiphase behavior in blocky fluids (A) Number of phases versus simulation time for increasing crosstalk (darker 
colors) – lines represent average over 50 phase field simulations. (B). Variation of number of steady-state phases versus crosstalk by phase-field 
simulations (black), NF (green), and eigen-mode counting (pink). Grey line represents number of blocks/phases. (C). Variation of relative composition 
of steady-state phases versus specific blocky phase with increasing crosstalk by PF simulations (black) and NF (green). (D) Variation of number of 
steady-state phases versus strength of intra-block interactions for increasing number of blocks (m=2, m=4, m=8) in the limit of very low cross-talk for 
N=16 components. 
In panels with markers, symbols represent average over 50 trials and dashes represent standard deviation over 50 trials. 
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Figure S3: Specificity and cross-talk in blocky fluids (A-C). Specificity-crosstalk trade-off in number of phases with increasing random crosstalk 
(𝜎𝜎) on x-axis and increasing number of components (darker colors) for N=16 components and m=2 (S3A), increasing interaction strength for N=27 
species and m=3 blocks (S3B), and increasing number of blocks for 𝜖𝜖 = −9. (S3C). In panels A,C, the number of phases is normalized by number 
of blocks. (D). Linear variation of crosstalk threshold with number of blocks and energy of specific interactions. (E-F). A master curve describes scaled 
number of coexisting phases (𝑁𝑁𝑝𝑝ℎ/𝑚𝑚) versus renormalized crosstalk ((𝜎𝜎 − 𝜎𝜎∗)/𝜎𝜎∗) where individual points are false colored by specific interactions 
(S3E) or number of blocks (S3F). 
 
  
In all panels, markers represent average over 50 trials and dashes represent standard deviation over 50 trials of eigen-mode based calculations. 
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Figure S4: Scaling relationships in sequence-based model of interactions (A-B). Variation of number of steady-state phases with sequence 
length R) and interaction strength (J) using phase-field simulations (black), NF (green), and y eigen-mode counting (pink), For panel B, J=-2, and for 
panel C, R=2, and in both conditions N=16 (C-D). Variation of phase capacity with increasing strength of interactions J (S4C) or number of species 
(S4D) for different number of features (x-axis). Capacity is limited by total number of components N=16. (E-F) Variation of scaling coefficient slope 
(𝛾𝛾) and intercept (𝑔𝑔) with N (x-axis) for different strengths of interactions (J, darker colors represent stronger interactions) derived from eigen-mode 
counting. Panel A shows a linear dependence of the slope on N for all energies.  
  
In all panels, markers represent average over 50 trials and dashes represent standard deviation over 50 trials of eigen-mode based calculations. 
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Figure S5: Sequence-features constrain number of encoded phases (A-C). Contour plots of mean number of phases for all key parameters of 
the sequence model i.e, sequence length/features (R), interaction strength (J), and number of sampled species (N). Each row represents a slice of 
the 3D contour with (A) J vs N, (B) R vs N and (C) J vs R. In each row, the third axis increases from left to right. In all panels, mean phases are 
computed over 50 trials of eigen-mode based calculations. 
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Supplementary Information 

 
The supplementary information for this manuscript is ar-
ranged into separate sections for theory, simulation, and 
analyses. 5 supplementary figures are found above. 
Theory 
In this paper, the underlying thermodynamic model em-
ployed follows the mean-field regular solution/Flory-Hug-
gins style approach. The free-energy is defined as: 
 

𝛽𝛽𝛽𝛽 = �𝜙𝜙𝑖𝑖 log(𝜙𝜙𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

+
1
2
�  
𝑁𝑁

𝑖𝑖=1

�𝜒𝜒𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖𝜙𝜙𝑗𝑗  
𝑁𝑁

𝑗𝑗=1

+ 𝜙𝜙𝑠𝑠 log(𝜙𝜙𝑠𝑠) 

Where the 𝑁𝑁 is the number of interacting species, 𝜙𝜙𝑖𝑖is 
the volume fraction of species 𝑖𝑖, 𝜙𝜙𝑠𝑠 = 1 − ∑ 𝜙𝜙𝑖𝑖𝑖𝑖  is the vol-
ume fraction of the solvent, and 𝜒𝜒𝑖𝑖𝑖𝑖 ∝ 𝜖𝜖𝑖𝑖𝑖𝑖 is the Flory pa-
rameter that is proportional to interaction strength. We 
assume the solvent is inert, molecules do not self-inter-
act and an equimolar solution i.e., 𝜙𝜙𝑖𝑖 = 1

𝑁𝑁+1
. The Hes-

sian, whose eigen-spectra are used to count unstable 
modes, is calculated as: 
 

𝐽𝐽𝑖𝑖𝑖𝑖 =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝜙𝜙𝑖𝑖𝜕𝜕𝜙𝜙𝑗𝑗
=
𝛿𝛿𝑖𝑖𝑖𝑖
𝜙𝜙𝑖𝑖

+
1
𝜙𝜙𝑠𝑠

+ 𝜒𝜒𝑖𝑖𝑖𝑖 

    Interactions between species (𝜒𝜒𝑖𝑖𝑖𝑖) depends on en-
semble and we outline briefly how they are specified. 
 
Random fluids -  For fluids with random interactions (Fig-
ures 1, S1), the interactions are drawn as i.i.d values 
from a gaussian distribution with zero mean i.e., 𝜒𝜒𝑖𝑖𝑖𝑖 ∼
𝑁𝑁(𝜇𝜇 = 0,𝜎𝜎). 
 
Blocky fluids – Interactions between components com-
prise a specific and random noisy component (Figures 2, 
S2, S3). Species (N) are split into m blocks/groups with 
the following interaction energies: 

𝜒𝜒 = 𝜒𝜒𝑠𝑠 + 𝜒𝜒𝑟𝑟 
𝜒𝜒𝑠𝑠,𝑖𝑖𝑖𝑖 = 𝜖𝜖𝑠𝑠 𝑖𝑖𝑖𝑖 𝑖𝑖, 𝑗𝑗 𝜖𝜖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
𝜒𝜒𝑟𝑟 ∼ 𝑁𝑁(𝜇𝜇 = 0,𝜎𝜎) 

 
Sequence-based fluids – Interactions between compo-
nents arise from additive interactions from underlying se-
quence of species (Figures 3, S4, S5). Briefly, each spe-
cies has 𝑅𝑅 features or sequence locations, whose values 
𝑠𝑠𝑖𝑖𝑖𝑖 are independently drawn from a normal distribution 
for each feature/position. A total of N species are gener-
ated per trial through this procedure. Here the subscript 
index 𝑖𝑖 (1,…,N) denotes species and 𝑘𝑘 denotes fea-
ture/position within species (1,…,R). The pairwise inter-
actions between distinct species 𝑖𝑖 and 𝑗𝑗 is then defined: 
 

𝜒𝜒𝑖𝑖𝑖𝑖 = � 𝐽𝐽𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑗𝑗𝑗𝑗
𝑘𝑘=𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 

Simulations 
Simulation techniques employed in this manuscript are 
described below. More generally, in each simulation 
techniques, multiple trials or trajectories were performed 
with similar parameters – randomly generating a 
concentration and interaction matrix/ensemble for each 
trial. Unless otherwise stated, the reported results are 
typically averaged over 50 simulations. 
 
Phase-field simulations – The spatiotemporal volume 
fractions of N species 𝜙𝜙𝑗𝑗(𝑟𝑟, 𝑡𝑡)  evolve according to the 
multicomponent Model B equations, previously 
introduced in  [17]. Briefly, the equations are: 

𝑑𝑑𝜙𝜙𝑗𝑗
𝑑𝑑𝑑𝑑

= ∇.���⃗ �𝑀𝑀𝑗𝑗  ∇��⃗ 𝜇𝜇𝑗𝑗� 

Where the mobility used is 𝑀𝑀𝑗𝑗 = 𝑀𝑀𝜙𝜙𝑗𝑗  recapitulates 
Fickian diffusion in limit of dilute inert solvent. The 
chemical potential term includes an interfacial 
stabilization term (𝜅𝜅 ∝ surface-tension) and is described 
as: 

𝜇𝜇𝑗𝑗 = log�𝜙𝜙𝑗𝑗� − log(𝜙𝜙𝑠𝑠) + �𝜒𝜒𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖
𝑖𝑖

−
𝜅𝜅
2
∇2𝜙𝜙𝑗𝑗 

All simulations are performed on a discretized 2D mesh, 
grid size 64 × 64 with a timestep of 𝑑𝑑𝑑𝑑 = 2𝑒𝑒 − 6 and sim-
ulations are run for atleast 25 × 106 timesteps to ensure 
convergence. The numerical scheme deploys an implicit-
explicit description, previously described I in [17] with a 
fourth-order stabilization term included for convergence. 
The initial concentrations are sampled as equimolar 
compositions with uniform noise added of magnitude 1

10𝑡𝑡ℎ
 

of absolute value. For each individual trajectory, a com-
position and interaction matrix are sampled. 
 
Numerical free-energy (NFE) optimization -  We leverage 
a recently developed method, described in detail in  [18], 
to identify the free-energy by numerical optimization of 
coupled ODEs. Briefly, the NFE method leverages linear 
irreversible thermodynamics to set up relaxation 
dynamics for the compositions of species so that the 
solution of equations converge to minima that have 
identical chemical potentials and mechanical pressures. 
The governing equations are: 

𝜕𝜕𝑡𝑡 𝜙𝜙𝑛𝑛 𝑖𝑖 =  𝜙𝜙𝑛𝑛 𝑖𝑖�( 𝜙𝜙𝑚𝑚 𝑖𝑖(𝜇𝜇𝚤𝚤𝑚𝑚� − 𝜇𝜇𝚤𝚤𝑛𝑛�) + 𝑃𝑃 
𝑚𝑚� − 𝑃𝑃 

𝑛𝑛�)
𝑚𝑚

 

Where 𝜙𝜙𝑖𝑖𝑛𝑛  represents volume fraction of species i in 
phase n, (𝜇𝜇𝚤𝚤𝑚𝑚� ) is the non-dimensional chemical potential 
of species i in phase m, and 𝑃𝑃 

𝑚𝑚� = 𝛽𝛽(∑ 𝜙𝜙𝑖𝑖
𝑑𝑑𝑑𝑑
𝑑𝑑𝜙𝜙𝑖𝑖

− 𝑓𝑓𝑖𝑖 ) is the 
non-dimensional mechanical pressure of phase 𝑚𝑚. To-
gether, the steady-state of these equations converge to 
states that are in the neighborhood of equilibrium coexist-
ing phases. The numerical implementation provided 
in  [18] is directly employed, except the interaction 
matrices are generated as previously described.  
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For running 50 trials of a particular set of parameters 
(block model) the approximate times for convergence are 
identified on a single node.  

𝑡𝑡𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∼ 5 × 106𝑠𝑠, 𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁 ∼ 103𝑠𝑠, 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒~10−2𝑠𝑠 
 
Analyses 
For each of the simulations, the final outcomes are a set 
of 𝑘𝑘 phases with compositions  𝜙𝜙𝛼𝛼=1,…,𝑘𝑘����������������⃗ , identified either 
from mesh data following PCA and clustering as in  [17] 
or from clustering following  [18]. 

Analyses on compositional similarity between two phases 
𝛼𝛼,𝛽𝛽 is measured by the angles between the two vectors 
< 𝜙𝜙�⃗ >𝛼𝛼,𝑠𝑠𝑠𝑠, < 𝜙𝜙�⃗ >𝛽𝛽,𝑠𝑠𝑠𝑠 . Angles close to 90′ represent 
orthogonal phases whereas angles close to 0 represent 
largely similar phases by composition. For Figure 2, the 
reference phase is used as one of the blocky phases, 
highly enriched in all block components but lacking non-
block species. Probability distributions in Figure S1 are 
computed by identifiying distribution of angles between 
multiple coexisting phases over 50 trajectories. 

Merger statistics: In Figure S1C, the phase-field 
simulation dynamics data is taken and distribution of 
phase sizes over time is identified. By masking the mesh 
data with phase labels, the average size of individual 
droplets is measured over time. This data is collected 
across 50 trajectories, and the mean-increase in size is fit 
to a power of the form < 𝑟𝑟 >∼ 𝑡𝑡𝑏𝑏.  The inset text reports 
the average as well as the standard deviation in growth of 
droplet sizes. 

Scaling laws: For the scaling laws identified in Figure 3, 
Figures S4-S5, the eigen-modes are computed a wide 
range of number of species N, features R, and strengths 
J across 50 random samples per parameter condition. For 
a given (N,J), the variation in mean predicted phases (<
𝑁𝑁𝑝𝑝ℎ >) is linearly regressed against log(𝑅𝑅) to identify a 
slope 𝛾𝛾 and intercept 𝑔𝑔(𝑁𝑁, 𝐽𝐽), plotted in Figures S5A-B. 
For all conditions, 𝑁𝑁𝑝𝑝ℎ𝑣𝑣𝑣𝑣 log(𝑅𝑅)  fit the data well, with 
regressed 𝑅𝑅2 > 0.99. 

Threshold-fit: For blocky fluids, we identify the threshold 
for crosstalk (𝜎𝜎∗) as the minimum value beyond which the 
average number of phases deviates more than 5% above 
the number of blocks. We identify the thresholds across a 
wide-range of thresholds and identify a linear fit of the 
form (Fig S3D) below:  
𝜎𝜎∗(𝑚𝑚, 𝑒𝑒) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐;𝑎𝑎 ≈ 0.31, 𝑏𝑏 ≈ −0.07, 𝑐𝑐 ≈ 2.4,𝑅𝑅2

= 0.97 
Here, m is the number of blocks and 𝜖𝜖  is strength of 
specific interactions. 
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